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ON THE MULTIPLICITY OF NON-CONSTANT

POSITIVE SOLUTIONS TO CERTAIN SEMI-LINEAR

ELLIPTIC EQUATIONS

Kimun Ryu

Abstract. Many phenomena occurring in the natural environ-
ment have been modeled and studied using mathematical meth-
ods. In particular, investigating the existence and multiplicity of
positive solutions, which represent the coexistence of equations, is
always an intriguing research topic. To study the multiplicity of
these positive solutions, it is necessary to analyze the behavior of
positive solutions concerning a given parameter in the equation. In
this research, we present a semi-linear partial differential equation
to explain a series of natural phenomena through the study of pos-
itive solution behavior. We aim to investigate the existence and
multiplicity of positive solutions that are not constant under homo-
geneous Neumann boundary conditions. Specifically, we apply the
Mountain Pass theorem to demonstrate the existence of positive
solutions for this equation, and further, we use the Leray-Schauder
degree theory to explore sufficient conditions for the existence of
two or more positive solutions.

1. Introduction

In this paper, we study the existence and multiplicity of non-constant
positive solutions to the following semi-linear elliptic equation

(1.1)

{
−∆u = (−D + αu

1+Mu)u in Ω,
∂u
∂ν = 0 on ∂Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, and D,
α, M are positive constants with the following hypothesis;

(H) α−DM > 0.
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The research of the above elliptic problem plays an important role
in the study of asymptotic behaviors to the prey-predator systems with
Michaelis-Menten(or Holling-type II) functional response.

Observe that the equation −D + αu
1+Mu = 0 has the unique positive

root u = D
α−DM with respect to u since α − DM > 0. For the sake

of convenience, we denote this unique positive root by β, that is, β =
D

α−DM .
To state the main results of this paper, consider the following well-

known eigenvalue problem{
−∆u = µu in Ω,
∂u
∂ν = 0 on ∂Ω.

Throughout this paper, we denote the eigenvalues of the above eigen-
value problem as µi and the respect multiplicity of µi as mi for i ≥ 1.
It is well-known that 0 = µ1 < µ2 < · · · and limi→∞ = ∞.

Now we state the main results of this paper.

Theorem 1.1. (i) If m2 < −D + α
M and µ2 <

αβ
(1+Mβ)2

, then (1.1)

has at least one non-constant positive solution.
(ii) If µ2 < α and αβ

(1+Mβ)2
∈ (µk0 , µk0+1) for some k0 ≥ 2, then (1.1)

has at least two non-constant positive solutions.

2. Proofs of the main results

In this section, we prove the main results of this paper, Theorem 1.1.
By using the maximum principle, the hypothesis (H) gives that any

solution u of the elliptic problem

(2.1)

{
−∆u = (−D + αu+

1+Mu+ )u in Ω,
∂u
∂ν = 0 on ∂Ω

is non-negative on Ω, where u+ = max{u, 0}. Thus it is easy to see that
any solution of (2.1) is a non-negative solution of (1.1).

Define the function J : H1(Ω) → R by

J(u) =

∫
Ω
(
1

2
|∇u|2–G(u))dx,

where G(u) =
∫ u
0 (−D + αs+

1+Ms+
)sds.

Lemma 2.1. J satisfies the Palais-Smale(PS) condition, that is, every
sequence {un} ⊂ H1(Ω) such that J(un) is bounded for all n ∈ N and
limn→∞ J ′(un) = 0, contains a convergent subsequence.
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Proof. Let {un} ⊂ H1(Ω) be a sequence such that |J(un)| ≤ C and

(2.2)
∣∣∣ ∫

Ω
(∇un,∇ϕ)dx−

∫
Ω

αu+n
1 +Mu+n

unϕdx
∣∣∣ ≤ ϵn||ϕ||H1

for all ϕ ∈ H1(Ω), where C is a positive constant, limn→∞ ϵn = 0 and
(·, ·) is the Rn-inner product. If un is bounded, then we see that the
proof is completed. Contrariwise, suppose that limn→∞ ||un||∞ = ∞(up
to subsequnece). Let zn = un

||un||∞ . We may assume that, by taking a

subsequence if necessary, limn→∞ zn = z0 strongly in C(Ω) and weakly
in H1(Ω) for some z0 ∈ H1(Ω) with ||z0||∞ = 1.

Dividing the equation (2.2) with ϕ = z−0 = min{z0, 0} by ||un||∞, we
have
(2.3)∣∣∣ ∫

Ω
(

∇un
||un||∞

,∇z−0 )dx−
∫
Ω
(−D+

αu+n
1 +Mu+n

)
un

||un||∞
z−0 dx

∣∣∣ ≤ ϵn
||z−0 ||H1

||un||∞
.

Since limn→∞ zn = z0 strongly in C(Ω), we know that

lim
n→∞

(

∫
Ω
∇zn∇z−0 dx–

∫
Ω
(−D+

αu+

1 +Mu+
)znz

−
0 dx) =

∫
Ω
|∇z−0 |

2dx+D

∫
Ω
(z−0 )

2dx.

Since limn→∞ ϵn = 0 in (2.3), it is concluded that∫
Ω
|∇z−0 |

2dx+D

∫
Ω
(z−0 )

2dx = 0,

and thus z−0 = 0 which implies that z0 ≥ 0 on Ω. From the equation
(2.2) and the given assumption, we have

lim
n→∞

{∫
Ω
∇zn∇ϕdx–

∫
Ω
(−D +

αu+

1 +Mu+
)znϕdx

}
= 0,

so that ∫
Ω
∇z0∇ϕdx− (−D +

α

M
)

∫
Ω
z0ϕdx = 0

for all ϕ ∈ H1(Ω), which gives that{
−∆z0 = αz0 in Ω,
∂z0
∂ν = 0 on ∂Ω.

By the maximum principle, we see that z0 > 0 since ||z0||∞ = 1 which
derives a contradiction since −D+ α

M > µ2. Therefore we conclude that
un is bounded, which completes the proof.

Lemma 2.2. J(0) = 0 and there is a ϕ0 ∈ H1(Ω)\Bρ(0) with J(ϕ0) ≤
0, where Bρ(0) is an open ball with radius ρ centered at 0 in H1(Ω).
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Proof. Note that J(0) = 0. It suffices to show that limt→∞ J(t) =
−∞.

For some large t0 > 0, a small ϵ0 > 0 and some ξ ∈ [0, t0], we have

∫ t

0
(−D +

αs+

1 +Ms+
)sds =

∫ t

0
(−D +

αs

1 +Ms
)sds

=

∫ t

0
sf(s)ds

=

∫ t0

0
sf(s)ds+

∫ t

t0

sf(s)ds

=

∫ t0

0
s2
f(s)− f(0)

s
ds+

∫ t0

0
sf(0)ds+

∫ t

t0

sf(s)ds

=

∫ t0

0
s2f ′(ξ)ds+ f(0)

∫ t0

0
sds+

∫ t

t0

sf(s)ds

≥
{

min
ξ∈[0,t0]

f ′(ξ)
}∫ t0

0
s2ds–D

∫ t0

0
sds+

∫ t

t0

sf(s)ds

≥ 1

3

{
min

ξ∈[0,t0]

α

(1 +Mξ)2
}
t0

3 − D

2
t0

2 +

∫ t

t0

(−D +
α

M
+ ϵ0)sds

≥ 1

3

{
min

ξ∈[0,t0]

α

(1 +Mξ)2
}
t0

3 − D

2
t0

2 +
1

2
(−D +

α

M
+ ϵ0)(t

2–t0
2),

where f(s) = −D+ αs
1+Ms . Therefore by taking the limit as t→ ∞, the

assumptions gives

lim
t→∞

J(t) = − lim
t→∞

∫
Ω
(

∫ t

0
(−D +

αs+

1 +Ms+
)sds)dx

≤ − lim
t→∞

∫
Ω
{1
3
{ min
ξ∈[0,t0]

α

(1 +Mξ)2
}t30 −

D

2
t20 +

1

2
(−D +

α

M
+ ϵ0)(t

2–t20)}

= −∞.

This completes the proof.

Lemma 2.3. There exist positive constants ρ and r such that J |∂Bρ(0) ≥
r.



Multiplicity of non-constant positive solutions 185

Proof. For ϕ ≥ 0 and some ξ ∈ [0, t0], we have

J(ϕ) =

∫
Ω

1

2
|∇ϕ|2dx–

∫ ϕ

0
(−D +

αs+

1 +Ms+
)sds

=
1

2

∫
Ω
|∇ϕ|2dx–

∫
Ω

( ∫ ϕ

0
s2
f(s)− f(0)

s
ds+

∫ ϕ

0
f(0)sds

)
dx

=
1

2

∫
Ω
|∇ϕ|2dx–

∫
Ω

( ∫ ϕ

0
f ′(ξ)s2ds

)
dx–f(0)

∫
Ω

( ∫ ϕ

0
sds

)
dx

≥ −f(0)
∫
Ω

1

2
ϕ2dx− 1

3
{ max
ξ∈[0,ϕ]

f ′(ξ)}
∫
Ω
ϕ3dx

≥ D

∫
Ω

1

2
ϕ2dx− 1

3
{ max
ξ∈[0,ϕ]

α

(1 +Mξ)2
}
∫
Ω
ϕ3dx

≥ min{1, D}
2

||ϕ||2H1 −
1

3
{ max
ξ∈[0,ϕ]

α

(1 +Mξ)2
}||ϕ||3L3 ,

where f(s) = −D + αs
1+Ms .

On the other hand, it follows from Lemma 7.2 in [5] and Lemma 5.4

in [1] that ||ϕ||L3 ≤ K1ϕ
1
2 (52)

5
6 ||ϕ||H1 , and thus we have

J(ϕ) ≥ ||ϕ||2H1(C1–C2||ϕ||H1)

for some positive constants C1 and C2. Thus for sufficiently small ϕ, we
conclude that C1–C2||ϕ||H1 > 0, which completes the proof.

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. (i) By Mountain pass theorem in [3], J has

a (mountain pass type; mp-type) critical point u∗ ≥ r > 0. Furthermore,
we may assume that

(2.4) Cq(J, u∗) ∼= δq,1G,

where Cq(J, u∗) is the qth-critical group with the abelian coefficient
group G of J at u∗, q = 0, 1, 2, · · · and δq,1 is the krouecker delta.(For
more details, one can refer to [4].)

Obviously, 0 and β are critical points of J . To show u∗ ̸≡ 0 and
u∗ ̸≡ β, we claim that the critical groups of u∗, 0, β are all different.
Note that for all u, ϕ, ψ ∈ H1(Ω),

< J ′(u), ϕ >=

∫
Ω
(∇u∇ϕ− (−D +

αu

1 +Mu
)uϕ)dx,

< J ′′(u)ϕ, ψ >=

∫
Ω
(∇ϕ∇ψ − (−D +

αu

1 +Mu
+

αu

(1 +Mu)2
)ϕψ)dx,
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where < ·, · > denotes the H1(Ω)-inner product. We see that

< J ′′(u)ϕ, ψ >=

∫
Ω
(∇ϕ∇ψ +Dϕψ)dx,

and thus

< J ′′(u)ϕ, ϕ >=

∫
Ω
(|∇ϕ|2 +Dϕ2)dx > 0,

for all ϕ ∈ H1(Ω) with ϕ ̸= 0. This implies that 0 is a non-degenerate
critical point of J , moreover the Morse index of 0, which will be de-
noted by M − ind(J, 0), is zero; and Cq(J, 0) ∼= δq,0G by Theorem 4.1
in [4, Chapter 1]. Therefore C1(J, 0) ∼= 0. On the other hand, since

< J ′′(β)ϕ, ψ >=
∫
Ω(∇ϕ∇ψ − αβ

(1+Mβ)2
)ϕψ)dx, it follows from the given

assumption µ2 <
αβ

(1+Mβ)2
that

< J ′′(β)ϕ, ϕ >=

∫
Ω
(|∇ϕ|2− αβ

(1 +Mβ)2
)ϕ2)dx ≤ (µ2−

αβ

(1 +Mβ)2
)

∫
Ω
ϕ2dx < 0

for ϕ ̸= 0 in the subspace of H1(Ω) spanned by the eigenfunctions cor-
responding to eigenvalues µk(k ≤ 2). Thus the Morse index of β is at
least 2, that is,

J∗ =M − ind(J, β) ≥ 2.

By the shifting theorem(Theorem 5.4) in [4, Chapter 1],

(2.5) Cq(J, β) ∼= Cq − J∗(J̃ , β)

for all q = 0, 1, 2, · · · , where J̃ is the restriction of J to a certain manifold
of H1(Ω) whose dimension is the nullity of the Hessian J ′′(β). There-
fore if q = 1 in (2.5), then 1 − J∗ ̸∈ (0, dim(kerJ ′′(β))) which gives

C1−J∗(J̃ , β) ∼= 0, and thus

C1(J, β) ∼= 0.

However, it follows from (2.4) that

C1(J, u
∗) ̸∼= 0.

Hence we see that u∗ ̸≡ 0 and u∗ ̸≡ β, which implies that u∗ is a non-
constant positive solution of (1.1). This completes the proof of (i).

(ii) Define the operator

T (u) = (−∆+ P )−1((−D +
αu

1 +Mu
) + Pu),

where P is a positive constant such that (−D+ αu
1+Mu)+Pu is increasing

in u ∈ [0,∞]. It follows from the standard regularity theorem and
Sobolev embedding theorem that T is a compact mapping from C(Ω)
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into itself. Now suppose that 0, β, u∗ are the only critical points of J .
Recall that u∗ is an isolated critical point of mo-type. Applying Theorem
2 in [6], we have

degW (I − T,Br(u∗) ∩W, 0) = −1,

where W is the natural positive cone in C(Ω) and Br(u∗) is the ball of
radius r centered at u∗ in C(Ω) for sufficiently small r > 0. Moreover,
by Lemma 13.1 and Lemma 13.4 in [2], it follows from the hypotheses
(H) that

degW (I − T,Br(0) ∩W, 0) = 1,

degW (I − T,BR(0) ∩W, 0) = 0

for sufficiently small r > 0 and sufficiently large R > 0. Using the
Leray-Schauder formula, we have

degW (I − T,Br(β) ∩W, 0) = (−1)
∑k0

k=2 mk

since αβ
(1+Mβ)2

∈ (µK0 , µK0+1) for some k0 ≥ 2. By the additivity prop-

erty of the degree, we have

0 = degW (I − T,BR(0) ∩W, 0)
= degW (I − T,Br(0) ∩W, 0) + degW (I − T,Br(u∗) ∩W, 0)
+ degW (I − T,Br(β) ∩W, 0)

= 1 + (−1) + (−1)
∑k0

k=2 mk

= (−1)
∑k0

k=2 mk ,

which derives a contradiction. This completes the proof.
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